Biochemical and Biophysical Research Communications

Peter (P.W.) Andrews

Department of Biomedical Science University of Sheffield Sheffield, UK

Wolfgang Baumeister

Abteilung Molekulare Strukturbiologie Max-Planck-Institut für Biochemie Martinsried, Germany

Ernesto Carafoli

Editor-in-Chief Venetian Institute of Molecular Medicine (VIMM) University of Padova, Italy

Chin Ha Chung

School of Biological Sciences College of Natural Sciences Seoul National University Seoul Republic of Korea

Zengyi Chang

Biochemistry and Molecular Biology School of Life Sciences Center of Protein Science Peking University Beijing, China

Vitaly Citovsky

Department of Biochemistry and Cell Biology State University of New York Stony Brook, NY USA

Bengt Fadeel

Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet Stockholm, Sweden

Barry Halliwell

Biochemistry Department National University of Singapore Singapore, Singapore

Cecilia Hidalgo

Faculty of Medicine University of Chile Santiago, Chile

Hans Jornvall

Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm, Sweden

Claude Klee

Laboratory of Biochemistry National Cancer Institute National Institutes of Health Bethesda, Maryland, USA

Guido Kroemer

INSERM, U848 Institut Gustave Roussy Villejuif, France

William J. Lennarz

Department of Biochemistry and Cell Biology State University of New York at Stony Brook Stony Brook, New York, USA

Anders (A.H.) Lund

Biotech Research and Innovation Centre University of Copenhagen Copenhagen, Denmark

Carlos Martínez-A

Department of Immunology and Oncology National Center for Biotechnology Campus Universidad Autonoma 28049 Madrid, Spain

Hisao Masai

Director of Center for Basic Technology Research, Genome Dynamics Project Department of Genome Medicine Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Satyajit Mayor

Cellular Organization and Signalling Group National Centre for Biological Science (NCBS), UAS-GKVK Campus Karnataka. India

Katsuhiko K. Mikoshiba

RIKEN Laboratory for Development Neurobiology, Japan

Davis No

Temasek Life Sciences Laboratory National University of Singapore Singapore, Singapore

James M. Ntambi

Departments of Biochemistry and Nutritional Sciences University of Wisconsin-Madison Madison WI 53706 USA

Sten Orrenius

Institutet of Environmental Medicine Karolinska Institutet Stockholm, Sweden

Jacques Pouysségur

UMR 6543 CNRS Centre Antoine Lacassagne Nice, France

Igor Stagljar

Department of Molecular Genetics and Biochemistry University of Toronto Toronto, Ontario, Canada

Kiyoshi Takatsu

Department of Immunology Institute of Medical Science University of Tokyo, Tokyo, Japan

Naoyuki Taniguchi

Systems Glycobiology Research Group RIKEN Global Research Cluster Wako, Japan

Anna Tramontano

Department of Physics Sapienza University of Rome Rome, Italy

Olga Troyanskaya

Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics Princeton University, New Jersey, USA

Isaac P. Witz

Tel Aviv University Tel Aviv, Israel

Correspondence regarding production may be sent to:

Biochemical and Biophysical Research Communications, Elsevier Inc.

525 B Street, Suite 1800, San Diego, California 92101-4495, USA Telephone +1 (619) 699-6857, Fax +1 (619) 699-6859, E-mail bbrc@elsevier.com

0006-291X(20141205)455:1-2:1-1

Cover photo. Epigenomic relatedness of IDH/SDH/FH mutant- versus non-mutant- tumors, as shown by PCA plots and heatmap of DNA methylation profiles. Samples included here are: (1) IDH-mutant versus -wildtype cholangiocarcinoma (GSE49656, n=32; GSE32286, n=50), IDH-mutant versus -wildtype glioma (GSE36278, n=136; GSE48461, n=56; GSE32286, n=62) and IDH-mutant versus -wildtype chondrosarcoma (GSE40853, n=51); (2) SDHx- versus kinase-mutant GIST (GSE34387, n=69) and SDHx- versus kinase-mutant paraganglioma/pheochromocytoma (GSE49293, n=22); and (3) multiple normal associated tissue lineages (n=19). Variables included here are the CpG methylation β -values, as measured by Infinium 450 K array, of the top 10 K differentially-methylated CpG targets between IDH/SDH/FH mutant- and non-mutant tumor groups (statistical calculations and graphics performed with Qlucore Omics Explorer software). In general, IDH/SDH/FH mutant tumors of diverse histological types and embryonic lineages show significantly greater global DNA hypermethylation than non-mutant counterparts. See J.J. Waterfall et al., The role of mutation of metabolism-related genes in genomic hypermethylation, Biochem. Biophys. Res. Commun. 455 (2014), 16–23 (Figure 1, this issue).